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Abstract

A general method has been developed for the stereoselective construction of 2,6-disubstituted dihydropyrans based on the Lewis acid-
catalyzed intramolecular reactions of oxocarbenium ions with vinylstannanes. This novel methodology was applied to the enantioselec-
tive total synthesis of (�)-centrolobine.
� 2007 Elsevier Ltd. All rights reserved.
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Substituted tetrahydropyrans are common structural
motifs of many natural products and biologically active
compounds. A number of strategies for their synthesis
have been reported.1 The related 2,6-disubstituted dihydro-
pyran ring system is a particularly attractive target because
of its occurrence in natural products and the synthetic use-
fulness of the olefin function for further functionalization.
The latter makes this system a key intermediate in the
preparation of many substituted tetrahydropyrans.2 Some
of the most widely used methods for the preparation of
dihydropyrans are based on hetero-Diels–Alder cycloaddi-
tions,3 electrophile-initiated alkylation of glycals,4 olefin
metathesis,5 intramolecular silyl-modified Sakurai reac-
tion,6 or vinylsilane cyclization of oxocarbenium ions
(silyl-Prins cyclizations).7

The Prins cyclization is one of the most effective reac-
tions for the synthesis of oxacyclic rings.8 Most Prins cycli-
zations involve coupling of homoallylic alcohols with
simple aldehydes under acid catalysis. Considerable effort
has been directed towards improving the efficiency of the
Prins cyclization, mainly by increasing the nucleophilicity
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of the alkene reagent. If the alkene moiety in the homo-
allylic alcohol bears a silyl substituent, the reaction can
be terminated following cyclization by elimination of the
silyl group, leading to the unsaturated product.9

Herein, we report that (Z)-vinylstannanes of type 1 par-
ticipate in highly diastereoselective Prins cyclizations with
oxocarbenium ions en route to 2,6-disubstituted dihydropy-
rans 2. Moreover, we also demonstrate, in the context of a
total synthesis of (�)-centrolobine (3) (Scheme 1), that the
necessary Prins cyclization substrates can be quickly assem-
bled from readily available optically pure epoxides.10

The preparation of vinylstannanes of type 1 required for
the Prins cyclization was easily accomplished by the regio-
and stereoselective hydrostannylation of terminal alkynes 4

bearing a hydroxyl group at the homopropargylic position
(Scheme 2).11

The vinylstannanes 1 thus prepared were reacted with
various aldehydes in the presence of TMSOTf12 at
�78 �C in Et2O to afford the corresponding 2,6-disubsti-
tuted dihydropyrans 2 (Table 1).13

The Lewis acid used above (TMSOTf) has previously
been shown to be effective at catalyzing Prins cyclizations.14

In most cases, as shown in Table 1, good chemical yields
and appreciable cis selectivities, verified by the qualitative
NOE enhancements, were obtained. The stereochemical
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Table 2
Prins cyclization of 5 with various aldehydes

SnBu3
Ph

HO
+

O

R

Me3SiOTf (2 equiv.)
Et2O, -78 oC, 2-4h OPh R

5 (91% ee)

H

6

Entry R Yield of 6a (%) eeb (%)

1 C6H5 95 91
2 p-BrC6H4 88 91
3 p-TsOC6H4 95 91
4 C6H5(CH2)2 80 87

a All yields are based on isolated product after purification by column
chromatography.

b Determined by HPLC analysis employing Daicel chiral columns.

Table 1
Synthesis of 2,6-disubstituted dihydropyrans

R1

SnBu3

OH
Me3SiOTf (2 equiv.)

-78 oC, Et2O, 2-4h O R2R1

+
R2 H

O

1 2

Entry R1 R2 Yield of 2a (%) cis/transb

1 H C6H5 92 —
2 H C6H5(CH2)2 86 —
3 C6H5 C6H5 94 Cis only
4 C6H5 p-BrC6H4 80 Cis only
5 C6H5 p-TsOC6H4 93 Cis only
6 C6H5 p-MeOC6H4 80 3.5:1
7 C6H5 C6H5(CH2)2 76 Cis only
8 C6H5 c-C6H11 72 Cis only
9 C6H5 C6H13 87 Cis only

10 C6H13 C6H5 91 Cis only
11 C6H13 p-BrC6H4 86 Cis only
12 C6H13 p-MeOC6H4 78 2:1
13 C6H13 p-TsOC6H4 87 Cis only
14 C6H13 C6H5(CH2)2 83 Cis only
15 C6H13 c-C6H11 69 Cis only

a All yields are based on isolated product after purification by column
chromatography.

b The ratio of products was determined by 1H NMR (500 MHz).
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outcome of this reaction is in accord with previous observa-
tions and with the expectation that cyclization should occur
via a chair-like transition state with R1 and R2 disposed
equatorially and with initial formation of an (E)-oxocarbe-
nium ion.7,13 It should be noted that the electron density in
the aromatic ring of the aryl-substituted oxocarbenium ions
appears to have a significant influence on the diastereomeric
ratio (see entries 6 and 12). Such a result could be ascribed
to theE/Z isomerization of the respective oxocarbenium
ions.7c,15

In the case of the series of cyclization experiments pre-
sented in Table 1 we used racemic starting materials. The
use of optically pure starting material 5 produced optically
pure 2,6-disubstituted dihydropyrans 6 without racemi-
zation (Table 2).

Finally, we applied our methodology to the total synthe-
sis of the natural product (�)-centrolobine (1), an antibi-
otic isolated from the heartwood of Centrolobium
robustum.16 The total synthesis of this natural product
has been reported previously by several research groups.17

The synthetic strategy employed by us is outlined in
Scheme 3.

The starting enantiomerically enriched epoxide 8 was
prepared from the corresponding olefin 7 via Sharpless
asymmetric dihydroxylation18 followed by tosylation of
the primary hydroxyl group and NaOH treatment. The
optical purity of 8 was found to be 90% ee by chiral HPLC
and the absolute configuration of the intermediate chiral
diol was established by CD-spectroscopy.19 The ring open-
ing of epoxide 8 with lithium acetylide–ethylenediamine
complex in DMSO and subsequent hydrostannylation11

afforded alcohol 9 in a good yield (60% over two steps).
The Prins cyclization of 9 with 4-tosyloxybenzaldehyde
(10) in the presence of TMSOTf yielded dihydropyran 11
in 87% yield. The structure and stereochemistry of the
cyclized product 11 were confirmed unambiguously by
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Scheme 3. Reagents and conditions: (a) AD-mix-a, t-BuOH–H2O, 0 �C, 80%, 90% ee; (b) TsCl, pyridine, 0 �C, 88%; (c) NaOH, Et2O–H2O, 93%; (d)
lithium acetylide–EDA, DMSO, 0 �C, 83%, 87% ee; (e) Bu2Sn(OTf)H then n-BuLi, 72%; (f) 10, TMSOTf (2.0 equiv), Et2O, �78 �C, 87%; (g) Pd/C, H2,
EtOAc, 78%; (h) TBSCl, imidazole, 95%; (i) Mg (10 equiv), MeOH, 25 �C, 50%; (j) NaH, MeI, THF then Bu4NF, THF, 0 �C, 73% (over two steps).

Fig. 1. The X-ray structure of 11.
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single-crystal X-ray analysis (Fig. 1).20 Catalytic hydroge-
nation removed the olefin double bond and cleaved the benzyl
ether leading to the tetrahydropyran 12 in 78% yield. Sub-
sequent protection of the phenol group as the TBS ether
followed by detosylation,21 methylation and deprotection
of the silyl ether afforded (�)-centrolobine in a 15% overall
yield. The physical and spectroscopic data obtained for
compound 3 were in full agreement with the literature.15,22

In conclusion, we have developed a simple approach to
functionalized 2,6-dihydropyrans and demonstrated the
utility of this methodology by the enantioselective synthesis
of (�)-centrolobine. The utilization of this strategy in syn-
thesis of the other natural tetrahydropyrans is underway
and will be reported in due course.
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